Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection

نویسندگان

  • Lin Feng
  • Le Wang
  • Bo Jin
چکیده

Frequent pattern outlier factor is used to detect outliers with complete frequent itemsets. But it is difficult in real-world time-series data streams application because of its low efficiency. In this paper, we propose a novel maximal frequent pattern outlier factor (MFPOF) and an outlier detection algorithm (OODFP) for online high-dimensional time-series outlier detection. Firstly, the time-series data streams are processed with sliding window to discover maximal frequent itemsets. Then the frequent patterns are simplified to compute the MFPOF of time-series data streams. Experimental results show that our approach not only provides higher efficiency, but also equivalent accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

FP-outlier: Frequent pattern based outlier detection

An outlier in a dataset is an observation or a point that is considerably dissimilar to or inconsistent with the remainder of the data. Detection of such outliers is important for many applications and has recently attracted much attention in the data mining research community. In this paper, we present a new method to detect outliers by discovering frequent patterns (or frequent itemsets) from...

متن کامل

Periodicity Detection of Outlier Sequences Using Constraint Based Pattern Tree with MAD

Patterns that appear rarely or unusually in the data can be defined as outlier patterns. The basic idea behind detecting outlier patterns is comparison of their relative frequencies with frequent patterns. Their frequencies of appearance are less and thus have lesser support in the data. Detecting outlier patterns is an important data mining task which will reveal some interesting facts. The se...

متن کامل

International Journal of advanced studies in Computer Science and Engineering

Patterns that appear rarely or unusually in the data can be defined as outlier patterns. The basic idea behind detecting outlier patterns is comparison of their relative frequencies with frequent patterns. Their frequencies of appearance are less and thus have lesser support in the data. Detecting outlier patterns is an important data mining task which will reveal some interesting facts. The se...

متن کامل

Oulier Analysis Using Frequent Pattern Mining – A Review

An outlier in a dataset is an observation or a point that is considerably dissimilar to or inconsistent with the remainder of the data. Detection of such outliers is important for many applications and has recently attracted much attention in the data mining research community. In this paper, we present a new method to detect outliers by discovering frequent patterns (or frequent item sets) fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCIT

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010