Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection
نویسندگان
چکیده
Frequent pattern outlier factor is used to detect outliers with complete frequent itemsets. But it is difficult in real-world time-series data streams application because of its low efficiency. In this paper, we propose a novel maximal frequent pattern outlier factor (MFPOF) and an outlier detection algorithm (OODFP) for online high-dimensional time-series outlier detection. Firstly, the time-series data streams are processed with sliding window to discover maximal frequent itemsets. Then the frequent patterns are simplified to compute the MFPOF of time-series data streams. Experimental results show that our approach not only provides higher efficiency, but also equivalent accuracy.
منابع مشابه
Identification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملFP-outlier: Frequent pattern based outlier detection
An outlier in a dataset is an observation or a point that is considerably dissimilar to or inconsistent with the remainder of the data. Detection of such outliers is important for many applications and has recently attracted much attention in the data mining research community. In this paper, we present a new method to detect outliers by discovering frequent patterns (or frequent itemsets) from...
متن کاملPeriodicity Detection of Outlier Sequences Using Constraint Based Pattern Tree with MAD
Patterns that appear rarely or unusually in the data can be defined as outlier patterns. The basic idea behind detecting outlier patterns is comparison of their relative frequencies with frequent patterns. Their frequencies of appearance are less and thus have lesser support in the data. Detecting outlier patterns is an important data mining task which will reveal some interesting facts. The se...
متن کاملInternational Journal of advanced studies in Computer Science and Engineering
Patterns that appear rarely or unusually in the data can be defined as outlier patterns. The basic idea behind detecting outlier patterns is comparison of their relative frequencies with frequent patterns. Their frequencies of appearance are less and thus have lesser support in the data. Detecting outlier patterns is an important data mining task which will reveal some interesting facts. The se...
متن کاملOulier Analysis Using Frequent Pattern Mining – A Review
An outlier in a dataset is an observation or a point that is considerably dissimilar to or inconsistent with the remainder of the data. Detection of such outliers is important for many applications and has recently attracted much attention in the data mining research community. In this paper, we present a new method to detect outliers by discovering frequent patterns (or frequent item sets) fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCIT
دوره 5 شماره
صفحات -
تاریخ انتشار 2010